
Object: the superest class of all
Inheritance and text in GUIs

Check out CloneAndText from SVN

• Interfaces
• Inheritance
• extends vs implements
• abstract classes and methods
• polymorphism
• Hardy's taxi
•anything else

The superest class in Java

Every class in Java inherits from Object

◦ Directly and explicitly:
public class String extends Object {…}

◦ Directly and implicitly:
class BankAccount {…}

◦ Indirectly:
class SavingsAccount extends BankAccount {…}

Q1

String toString()

boolean equals(Object otherObject)

Class getClass()

Object clone()

…

Often overridden

Often useful

Often dangerous!

Q2

Return a concise, human-readable summary
of the object state

Very useful because it’s called automatically:
◦ During string concatenation
◦ For printing
◦ In the debugger

getClass().getName() comes in handy
here…

Should return true when comparing two
objects of same type with same “meaning”
◦ Must check types—use instanceof
◦ Must compare state—use cast
Example: Similar to what did in Fraction:
@Override
public boolean equals(Object obj) {

// First, check type of other object
if (!(obj instanceof SafeDepositBox))

return false;
// Next, cast the other object so we can get at the fields

SafeDepositBox otherBox = (SafeDepositBox) obj;
// Finally, compare all instance fields using == for
// primitives, equals method for objects.

return this.boxNumber == otherBox.boxNumber;

Avoiding representation exposure:
◦ i.e. returning an object that lets other code change

our object’s state
public class Customer {

private String name;
private BankAccount acct;
…
public String getName() {

return this.name; // OK!
}

public BankAccount getAccount() {
return this.acct; // Rep. exposure!

}
}Book says (controversiallly) to use

return (BankAccount) this.acct.clone();” Q3,4

clone() is supposed to make a deep copy
1. Copy the object
2. Copy any mutable objects it points to
Object’s clone() handles 1 but not 2
Effective Java includes a seven page
description on overriding clone():
◦ “[You] are probably better off providing some

alternative means of object copying or simply not
providing the capability.”

Effective Java, by Joshua Block Q5,6

Copy constructor in Customer:
◦ public Customer(Customer toBeCopied) {…}

Copy factory in BankAccount:
◦ public abstract BankAccount getCopy();

Fixed Example:
◦ public BankAccount getAccount() {

return this.acct.getCopy();
}

Note that doing this changes BankAccount
into an abstract class:

/**
* @return a deep copy of this account
*/
public abstract BankAccount getCopy();

public Customer(String name, BankAccount
account) {
this.name = name;
// TODO 6: fix representation exposure
// this.account = account;
this.account = account.getCopy();

}

public BankAccount getAccount() {
// TODO 7: fix representation exposure
// return this.account;
return this.account.getCopy();

}

/**
* Constructs a deep copy of the given
* customer object.
*
* @param toBeCopied
*/
public Customer(Customer toBeCopied) {
this.name = toBeCopied.name;
this.account = toBeCopied.account.getCopy();

}

GUI concepts are review.

Some details are new.

Such as how the inner class
refers to instance fields of the
enclosing class.

Demo
UML diagram (correction!)
Begin work (with Hardy partner)

	CSSE 220 Day 16
	Questions?
	I, Object
	Object
	Object Provides Several Methods
	Overriding toString()
	Overriding equals(Object o)
	The Reason for clone()
	The Trouble with clone()
	Alternatives to clone()
	Add method stub to BankAccount
	Fix representation exposure:
	Add a copy constructor
	Better Frames�Through Inheritance
	BallWorlds

